Spec No.: ZTT 18-88240

TECHNICAL SPECIFICATION

	Optic	al Ground	Wire	
				-
A	June 30, 2018	Linda	Lemon 	Felix
Version	Date	Prepared	Reviewed	Approved

Address: No.5, Zhongtian road, Nantong economic and technological development zone, Jiangsu Province, China Tel: +86-513-89191138 Fax: +86-513-8359 9670 Zip code: 226010 Website: www.zttcable.com

1.GENERAL

1.1 SCOPE

This specification covers Optical Ground Wire Cables (OPGW) for the installation on high voltage overhead power lines. The cable contains optical fibers for data transmission and telecom purposes and is installed instead of a ground wire.

The specification describes the basic design of an OPGW-cable with its main components: the fibers, the optical fiber unit and the cable armoring. Furthermore this specification contains information concerning the quality assurance during manufacturing, the final acceptance tests, the type tests and the packaging. Any technical data mentioned in this product specification serve for describing the product only and should not be understood as an assurance of properties.

1.2 Cable Description

Cable which has the dual performance functions of a conventional ground wire with telecommunication capabilities.

1.3 Quality

ZTT ensures a continuing level of quality in our cable products through several quality control programs including ISO 9001.

1.4 Reliability

ZTT ensures product reliability through rigorous qualification testing of each product family. Both initial and periodic qualification testing are performed to assure the cable's performance and durability in the field environments.

1.5 Reference

The cable which ZTT offered are designed, manufactured and tested according to international standards as follows:

IEC 60793-1	Optical fiber Part 1: Generic specifications						
IEC 60793-2	Optical fiber Part 2: Product specifications						
ITU-T G.652	Characteristics of a single-mode optical fiber cable						
ITU-T G.655	Characteristics of a non-zero dispersion-shifted single-mode optical fiber and						
110-1 0.000	cable						
EIA/TIA 598 B	Color code of fiber optic cables						
IEC 60794-4-10	Aerial optical cables along electrical						
1EC 00794-4-10	power lines – Family specification for OPGW						
IEC 60794-1-2	Optical fiber cables-Part 1-2: Generic specification-Basic optical cable test						
120 007 94-1-2	procedures						
IEEE1138-2009	IEEE Standard for testing and performance for optical ground wire (OPGW) for						
ILLL1130-2009	use on electric utility power lines						
IEC 61232	Aluminum – clad steel wire for electrical purposes						
IEC 60104	Aluminum magnesium-silicon alloy wire for overhead line conductors						
IEC 61089	Round wire concentric lay overhead electrical stranded conductors						

2. OPTICAL FIBER

The optical fiber is made of high pure silica and germanium doped silica. UV curable acrylate material is applied over fiber cladding as optical fiber primary protective coating. The detail data of optical fiber performance are shown in the following table.

Optical fiber uses special spun device successfully controlled the value of PMD, and makes sure that it can keep stable in cabling.

Category	Description	Specifications	
Category	Description	After cabling	
	Attenuation @1310 nm	≤ 0.36 dB/km	
	Attenuation @1550 nm	≤ 0.22 dB/km	
	Zero Dispersion Wavelength	1300~1324 nm	
	Zero Dispersion Slope	0.073~0.092 ps/nm ^{2.} km	
Optical Specifications	PMD Link value	≤0.2 ps/√km	
	Cable Cutoff Wavelength (λ_{cc})	≤1260 nm	
	Macro bending Loss		
	(100 turns; Ф50 mm) @1550 nm (100 turns; Ф50 mm) @1625 nm	≤ 0.05 dB ≤ 0.10 dB	
	Mode Field Diameter @1310 nm	9.2±0.4µm	
	Cladding Diameter	125 ±0.7μm	
Dimensional Specifications	Core/clad concentricity error	≤0.6µm	
	Cladding Non-Circularity	≤1%	
Mechanical Specifications	Proof stress	≥0.69Gpa	

G.652D Fiber in cable

3. CABLE STRUCTURAL DRAWING

ZTT			Type	1		Serial No:	ZTT2018	-88240
ZhongTian	OPGW Cable Specifications					Bid No:	OPG	W
Cable Type:		OPGW - 48	G652-/	AST-65 [24.1;43	.7]	ELNR.:10 (09 91	
		\sim	\frown	_		AS wire		
			\leq			Optical fibers	and Gel	
		\sim (\cdot	$ \mathbf{N} $			SUS tube		
			:#			AL-covered la	iyer	
				7		AA wire	-	
		\bigvee	$ \rightarrow $]				
		\bigcirc	\bigcirc					
		Material	No	Material	No.	Mate	erial Dia.	
	Fiber	G.652	48					
OPGW	US Tube	SUS	1		รเ	JS outer-Dia.	3.50	mm
Structure	AL-tube		1	Inner-Dia.	3.70	Outer-Dia.	5.80	mm
	Layer1	20.3%AS wire	2	AA wire	8	Diameter	2.50	mm
	according	g to IEC60794	-4-1, IE	EE-1138 standard	ds			
		-		ver is right hand(Z-		ing)		
	Cable Dia						10.80	mm
	Cable W	eight					241	kg/km mm²
	Supportir	Section of AS	ion Wire	9.82	mm ²		64.8	mm ⁻
		Section of AA	Wire	9.82 39.27	mm ²			
		Section of AL		15.67	mm ²			
	Rated Te	ensile Strength	ı (RTS)				24.1	kN
Technical Data	Modulus	of Elasticity (E	E-Modul	us)			77.5	kN/mm ²
	Thormol	Elenastion Co	officien	+			10.0	A 0-6100
	Permissi	ble Maximum	Workin	g Stress (40% RT	S)		148.8	N/mm ²
	Everyday	/ Stress (EDS	S) (16%-	~25% RTS)		59.5	~93	N/mm²
	DC Resis							
		ne Current						
	Short Tin	ne Current Ca	pacity	(20℃~200℃)			43.7	
	wiinimum	Bending Rad					162	
Temperature	Installatio	n		Operating:		-10)℃ ~ +50	
-		tation and Op	eration)°C ~ +80	
				Values				-
	Remarks: All Sizes and Values are Nominal Values Diameter Tolerance: ±1%; Weight Tolerance: ±2%;							
-	Diameter	Tolerance. $\pm 1\%$	s; weig					

			Type 2			Serial No:	ZTT2018-882
ZhongTian		OPGW Cab	ole Spe	cifications		Bid No:	OPGW
Cable Type	:	OPGW - 480	G652-A	ST-81 [67.2;55	.2]	ELNR.: 10 (009 92
						AA wire	
						Optical fibers	and Gel
	/		\mathcal{H}			SUS tube	
	(AL-covered la	iyer
			A			AS wire	<u> </u>
						AS wile	
		Material	No	Material	No.		erial Dia.
	Fiber		No 48	Material			erial Dia.
OPGW	Fiber US Tube				No.		erial Dia. 3.50 mm
OPGW Structure	US Tube AL-tube	G.652 SUS		Material Inner-Dia.	No. St 3.70	Mate	
	US Tube AL-tube	G.652			No.	Mate JS outer-Dia.	3.50 mm
	US Tube AL-tube	G.652 SUS		Inner-Dia.	No. St 3.70	Mate JS outer-Dia. Outer-Dia.	3.50 mm 6.00 mm
	US Tube AL-tube Layer1	G.652 SUS 20.3%AS wire	48 1 1 7	Inner-Dia.	No.	Mate JS outer-Dia. Outer-Dia.	3.50 mm 6.00 mm
	US Tube AL-tube Layer1	G.652 SUS 20.3%AS wire g to IEC60794	48 1 7 -4-1, IEE	Inner-Dia. AA wire	No	Mate JS outer-Dia. Outer-Dia. Diameter	3.50 mm 6.00 mm
	US Tube AL-tube Layer1	G.652 SUS 20.3%AS wire g to IEC60794 g direction of c	48 1 7 -4-1, IEE	Inner-Dia. AA wire E-1138 standard	No	Mate JS outer-Dia. Outer-Dia. Diameter	3.50 mm 6.00 mm
	US Tube AL-tube Layer1 according Stranding Cable Dia Cable We	G.652 SUS 20.3%AS wire g to IEC60794 g direction of o ameter eight	48 1 7 -4-1, IEE puter laye	Inner-Dia. AA wire E-1138 standard	No	Mate JS outer-Dia. Outer-Dia. Diameter	3.50 mm 6.00 mm 3.00 mm 12.00 mm 435 kg/kl
	US Tube AL-tube Layer1 according Stranding Cable Dia Cable We	G.652 SUS 20.3%AS wire g to IEC60794 g direction of c ameter	48 1 7 -4-1, IEE puter laye	Inner-Dia. AA wire E-1138 standard	No. St 3.70 2 Is Strand	Mate JS outer-Dia. Outer-Dia. Diameter	3.50 mm 6.00 mm 3.00 mm 12.00 mm

according									
Stranding									
Cable Dia	ameter					12.00	mm		
Cable We			435	kg/km					
Supportin	ng Cross Section				mm ²				
	Section of AS Wire		49.48 mm ²	2					
	Section of AA Wire		14.14 mm ²) -					
	Section of AL Tube		17.52 mm ²	2					
Rated Te	nsile Strength (RTS)				67.2	kN		
		ilus)				122.2	kN/mm		
Thermal	Elongation Coefficie					14 9	×10 ⁻⁶ /℃		
Permissik	ole Maximum Worki	ng Stress (40	J% KIS)			331.1	N/mm ²		
Everyday	Stress (EDS) (16%	%~25% RTS)		1:	32.4	~206.9	N/mm ²		
						0.616	Ω/km		
Short Tim	ne Current	(1s)				7.4	kA		
Short Tim	ne Current Capacity	(20°C~200°	C)			55.2	kA ² S		
		Installation				240			
						180	mm		
Installatio	n				-10°	C ~ +50	°C		
Installation Transportation and Operation					-40°	C ~ +80	°C		
All Sizes and Values are Nominal Values									
All Sizes a									
		al Values	e: ±2%;						
	Stranding Cable Dia Cable We Supportin Rated Te Modulus Thermal Permissil Everyday DC Resis Short Tim Short Tim Minimum	Stranding direction of outer la Cable Diameter Cable Weight Supporting Cross Section Section of AS Wire Section of AA Wire Section of AL Tube Rated Tensile Strength (RTS Modulus of Elasticity (E-Modu Thermal Elongation Coefficie Permissible Maximum Worki Everyday Stress (EDS) (16% DC Resistance Short Time Current Short Time Current Short Time Current Capacity Minimum Bending Radius:	Stranding direction of outer layer is right h Cable Diameter Cable Weight Supporting Cross Section Section of AS Wire Section of AA Wire Section of AL Tube Rated Tensile Strength (RTS) Modulus of Elasticity (E-Modulus) Thermal Elongation Coefficient Permissible Maximum Working Stress (40 Everyday Stress (EDS) (16%~25% RTS) DC Resistance Short Time Current (1s) Short Time Current Capacity (20°C~200° Minimum Bending Radius: Installation: Operating: Installation	Stranding direction of outer layer is right hand(Z-Strai Cable Diameter Cable Weight Supporting Cross Section Section of AS Wire 49.48 mm ² Section of AA Wire 14.14 mm ² Section of AL Tube 17.52 mm ² Rated Tensile Strength (RTS) Modulus of Elasticity (E-Modulus) Thermal Elongation Coefficient Permissible Maximum Working Stress (40% RTS) Everyday Stress (EDS) (16%~25% RTS) DC Resistance Short Time Current (1s) Short Time Current Capacity (20°C~200°C) Minimum Bending Radius: Installation: Operating: Installation	Cable Weight Supporting Cross Section Section of AS Wire 49.48 mm² Section of AA Wire 14.14 mm² Section of AL Tube 17.52 mm² Rated Tensile Strength (RTS) Modulus of Elasticity (E-Modulus) Thermal Elongation Coefficient Permissible Maximum Working Stress (40% RTS) Everyday Stress (EDS) (16%~25% RTS) 12 DC Resistance Short Time Current Capacity (20°C ~200°C) Minimum Bending Radius: Installation: Operating: Installation	Stranding direction of outer layer is right hand(Z-Stranding) Cable Diameter Cable Weight Supporting Cross Section Section of AS Wire 49.48 mm² Section of AA Wire 14.14 mm² Section of AL Tube 17.52 mm² Rated Tensile Strength (RTS) Modulus of Elasticity (E-Modulus) Thermal Elongation Coefficient Permissible Maximum Working Stress (40% RTS) Everyday Stress (EDS) (16%~25% RTS) 132.4 DC Resistance Short Time Current (1s) Short Time Current Capacity (20°C~200°C) Minimum Bending Radius: Installation: Operating: -10°	Stranding direction of outer layer is right hand(Z-Stranding)Cable Diameter12.00Cable Weight435Supporting Cross Section81.1Section of AS Wire49.48 mm²Section of AA Wire14.14 mm²Section of AL Tube17.52 mm²Rated Tensile Strength (RTS)67.2Modulus of Elasticity (E-Modulus)122.2Thermal Elongation Coefficient14.9Permissible Maximum Working Stress (40% RTS)331.1Everyday Stress (EDS) (16%~25% RTS)132.4Short Time Current(1s)Short Time Current Capacity (20°C~200°C)55.2Minimum Bending Radius:Installation:240Operating:180180		

AZTT			Туре	3		Serial No:	TT2018-88240
中天科技							
ZhongTian		OPGW Cal	ole Sp	ecifications		Bid No:	OPGW
Cable Type:	OPGW - 96G652-AST-84 [46.2;60.4]					ELNR.: 10 0	09 93
						AS wire	
			N N			Optical fibers	and Gel
	(\ge ($\cdot \cdot$	\downarrow			SUS tube	
	((•			AL-covered la	yer
			\mathbb{A})		AA wire	
		Martala	NL.		NL.		
		Material	No	Material	No.	Mate	rial Dia.
	Fiber		96				4.50
OPGW	US Tube	SUS	1	lanar Dia		JS outer-Dia.	4.50 mm
Structure	AL-tube	20.3%AS wire	I C	Inner-Dia.		Outer-Dia.	7.40 mm 2.50 mm
	Layeri	20.3%AS wife	6	AA wire	6	Diameter	2.50 mm
		-		-		-	
		-		EE-1138 standard			
			outer lay	er is right hand(Z-	-Strand	ing)	
	Cable Di						12.40 mm
	Cable W						382 kg/km
	Supportin	ng Cross Sect		20.45			84.6 mm ²
		Section of AS Section of AA		29.45 29.45	mm ²		
				25.66			
	Rated Te	ensile Strength	(RTS)				46.2 kN
Technical Data	Modulus	of Elasticity (E	E-Modul	us)			
	Thermal	Elongation Co	efficien	t			17.1 ×10⁻ /℃
	Permissi	ble Maximum	Working	t g Stress (40% RT	S)		218.4 N/mm ²
	Everyday	/ Stress (EDS	S) (16% [,]	~25% RTS)		87.4	~136.5 N/mm ²
	DC Resis	stance					0.467 Ω/km
	Short Tin	ne Current		(1s)			7.8 kA
				(40℃~200℃)			60.4 kA ² S
	Minimum	Bending Rad					
Tomosecture	المطملحة			Operating:			
Temperature							℃ ~ +50 ℃ ℃ ~ +80 ℃
Kange:	-	tation and Op				-40	C ~ +80 ℃
Domarka	Remarks: All Sizes and Values are Nominal Values						
Remarks:				values ht Tolerance: ±2%;			

O ZTT			Type 4	ļ		Serial No:	ZTT2018	8-88240
ZhongTian		OPGW Cat		Bid No:	OPO	GW		
Cable Type:		OPGW - 96	G652-A	ST-109 [71.3;9	6.1]	ELNR.: 10	009 94	
						AS wire		
			$\langle \bigcirc$			Optical fibers	and Gel	-
		\ge (\cdot ,	X	_)		SUS tube		-
	(• >			AL-covered la		-
)			ayer	-
			$\langle () \rangle$			AA wire		-
			P					
		Material	No	Material	No.	Mate	erial Dia.	
	Fiber	G.652	96					
OPGW	US Tube	SUS	1		S	US outer-Dia.	4.50	mm
Structure	AL-tube		1	Inner-Dia.	4.70	Outer-Dia.	7.90	mm
	Layer1	20.3%AS wire	7	AA wire	4	Diameter	3.00	mm
	Stranding Cable Dia Cable W Supportir	g direction of c ameter eight ng Cross Sect Section of AS Section of AA Section of AL	ion Wire Wire tube	EE-1138 standard er is right hand(Z- 49.48 28.27 31.67	Strand		109.4	kg/km mm ²
		ensile Strength						
Technical Data	Modulus	Of Elasticity (E	z-IVIODUIU	JS)			106.3	kN/mm
	Dormissi	Elongation CC	Working) Stress (40% RT	G)		10.1	×10 ⁻⁶ /℃
	Fvervday	/ Stress (EDS		25% RTS)	3)	104.3	~163	N/mm ²
	DC Resis	stance) (1070*	25% RTS)		104.0	0.392	N/mm ² Ω/km
	[ne Current	(1s)			9.8	kA
	Short Tin	ne Current Ca	pacity (40℃~200℃)			96.1	kA ² S
	Minimum	n Bending Rad	lius: I	nstallation			278	mm
	_		(Operating:				mm
Temperature	.						0°C ~ +50	
		rtation and Op				-4(0°C ~ +80	°C
Remarks:		and Values are						
_			Ĩ	ht Tolerance: ±2%;	,			10/00
Rev. ZTT-TD	Designe	linda.co	ii	Authorized	L	emon Lu	2018/	/6/29

● ス て て 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	Type 5	Serial No:	ZTT2018-88240
ZhongTian	OPGW Cable Specifications	Bid No:	OPGW

Cable Type:

OPGW - 144G652-AST-105 [47.1;92.3] ELNR.: 10 009 95

		Material	No	Material	No.	Mate	erial Dia.
	Fiber	G.652	144				
OPGW	US Tube	SUS	1		S	US outer-Dia.	5.20 mm
Structure	AL-tube		1	Inner-Dia.	5.40	Outer-Dia.	8.30 mm
	Layer1	20.3%AS wire	4	AA wire	8	Diameter	2.80 mm

		g to IEC60794-4-1, IE							
		direction of outer la	yer is right hand	Z-Stranding)		90 mm			
	Cable Diameter								
	Cable We	eight	38	34 kg/km					
	Supportin	ng Cross Section			105	1 mm^2			
		Section of AS Wire	24.6	3 mm ²					
		Section of AA Wire	80.4	6 mm ²					
	Rated Te	nsile Strength (RTS)			47	.1 kN			
Technical Data	Modulus	of Elasticity (E-Modu	ılus)		85	.1 kN/mm ²			
	Thermal I	Elongation Coefficier	nt		18	.5 ×10⁻⁰/℃			
	Permissik	Elongation Coefficier ble Maximum Workir Stress (EDS) (16%	ng Stress (40% F	RTS)	179	.3 N/mm ²			
	Everyday	Stress (EDS) (16%	~25% RTS)	•	71.7 ~112	.1 N/mm ²			
	DC Resis	tance			0.36	6 0/km			
	Short Tim								
	Short Tim	ne Current Capacity	(40°C~200°C)		92	.3 kA ² S			
	Minimum	Bending Radius:	Installation:		27	′8 mm I			
			<u> </u>			-			
Temperature	Installatio				-10℃ ~ +5				
Range:	Transport	tation and Operation			-40℃ ~ +8	30 ℃			
Remarks:	All Sizes a	nd Values are Nomina	al Values						
	Diameter 7	Tolerance: ±1%; Wei	ght Tolerance: ±2	%;					
Rev. ZTT-TD	Designei	linda.cai	Authorized	lemon lu	201	8/6/29			

4. COLOR IDENTIFICATION OF FIBER IN OPGW

4.1 Color code of fiber in OPGW shall be identified referring to the following table:

Typica	l number	of fiber:	48
--------	----------	-----------	----

Remark	Fiber No. & Color						
	1	2	3	4	5	6	
Without Color Ding	Blue	Orange	Green	Brown	Gray	White	
Without Color Ring	7	8	9	10	11	12	
	Red	Nature	Yellow	Violet	Pink	Aqua	
	13	14	15	16	17	18	
With S150 Color	Blue	Orange	Green	Brown	Gray	White	
Ring	19	20	21	22	23	24	
	Red	Nature	Yellow	Violet	Pink	Aqua	
	25	26	27	28	29	30	
With S120 Color	Blue	Orange	Green	Brown	Gray	White	
Ring	31	32	33	34	35	36	
	Red	Nature	Yellow	Violet	Pink	Aqua	
	37	38	39	40	41	42	
	Blue	Orange	Green	Brown	Gray	White	
With S90 Color Ring	43	44	45	46	47	48	
	Red	Nature	Yellow	Violet	Pink	Aqua	

Typical number of fiber: 96

Remark	Fiber No. & Color							
	1	1 2		4	5	6		
	Blue	Orange	Green	Brown	Gray	White		
Without Color Ring	7	8	9	10	11	12		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	13	14	15	16	17	18		
With S150 Color	Blue	Orange	Green	Brown	Gray	White		
Ring	19	20	21	22	23	24		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	25	26	27	28	29	30		
With S120 Color	Blue	Orange	Green	Brown	Gray	White		
Ring	31	32	33	34	35	36		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	37	38	39	40	41	42		
	Blue	Orange	Green	Brown	Gray	White		
With S90 Color Ring	43	44	45	46	47	48		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	49	50	51	52	53	54		
With S60	Blue	Orange	Green	Brown	Gray	White		
Color Ring	55	56	57	58	59	60		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	61	62	63	64	65	66		
With D160 Color	Blue	Orange	Green	Brown	Gray	White		
Ring	67	68	69	70	71	72		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	73	74	75	76	77	78		
With D120	Blue	Orange	Green	Brown	Gray	White		
Color Ring	79	80	81	82	83	84		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	85	86	87	88	89	90		
With D80	Blue	Orange	Green	Brown	Gray	White		
Color Ring	91	92	93	94	95	96		
	Red	Nature	Yellow	Violet	Pink	Aqua		

Typical number of fiber: 144

Remark	Fiber No. & Color							
	1	2	3	4	5	6		
	Blue	Orange	Green	Brown	Gray	White		
Without Color Ring	7	8	9	10	11	12		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	13	14	15	16	17	18		
With S180 Color	Blue	Orange	Green	Brown	Gray	White		
Ring	19	20	21	22	23	24		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	25	26	27	28	29	30		
With S150 Color	Blue	Orange	Green	Brown	Gray	White		
Ring	31	32	33	34	35	36		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	37	38	39	40	41	42		
With S120 Color	Blue	Orange	Green	Brown	Gray	White		
Ring	43	44	45	46	47	48		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	49	50	51	52	53	54		
With SOO Calar Ding	Blue	Orange	Green	Brown	Gray	White		
With S90 Color Ring	55	56	57	58	59	60		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	61	62	63	64	65	66		
With S60	Blue	Orange	Green	Brown	Gray	White		
Color Ring	67	68	69	70	71	72		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	73	74	75	76	77	78		
With S30	Blue	Orange	Green	Brown	Gray	White		
Color Ring	79	80	81	82	83	84		
	Red	Nature	Yellow	Violet	Pink	Aqua		
	85	86	87	88	89	90		
With D200 Color	Blue	Orange	Green	Brown	Gray	White		
Ring	91	92	93	94	95	96		
	Red	Nature	Yellow	Violet	Pink	Aqua		

Remark	Fiber No. & Color						
	97	98	99	100	101	102	
With D160 Color	Blue	Orange	Green	Brown	Gray	White	
Ring	103	104	105	106	107	108	
	Red	Nature	Yellow	Violet	Pink	Aqua	
	109	110	111	112	113	114	
With D120	Blue	Orange	Green	Brown	Gray	White	
Color Ring	115	116	117	118	119	120	
	Red	Nature	Yellow	Violet	Pink	Aqua	
	121	122	123	124	125	126	
With D80	Blue	Orange	Green	Brown	Gray	White	
Color Ring	127	128	129	130	131	132	
	Red	Nature	Yellow	Violet	Pink	Aqua	
	133	134	135	136	137	138	
With D40	Blue	Orange	Green	Brown	Gray	White	
Color Ring	139	140	141	142	143	144	
	Red	Nature	Yellow	Violet	Pink	Aqua	

Color ring method:

S180: Use single black color ring on the fiber surface with 180mm alternation:

D120: Use double black color ring on the fiber surface with 120mm alternation:

D80: Use double black color ring on the fiber surface with 80mm alternation:

D40: Use double black color ring on the fiber surface with 40mm alternation:

5. TEST REQUIREMENTS FOR OPGW

5.1 General

There are different test series to assure the quality of OPGW:

- Routine test (in-process testing according to internal quality plan)
- > Factory acceptance test (FAT, witnessed by customer)
- > Type test (only in case of a basic new design, repetition in exceptional cases)

OPGW tests shall be in accordance with applicable standards or agreements between purchaser and manufacturer.

As a general rule the tests will be performed according IEC 60794-4-10. However, if necessary tests can be done according to IEEE Std1138.

Type test

Type test may be waived by submitting maker's certificate of the similar product performed in an internationally acknowledged independent test organization or laboratory. If type test should be performed, it will be carried out according to an extra type test procedure reached to an agreement between purchaser and manufacturer.

Routine test

The optical attenuation coefficient on all production cable lengths is measured according to IEC 60793-1-CIC (Back-scattering technique, OTDR). Standard single-mode fibers are measured at 1310nm and at 1550nm. Non-zero dispersion shifted single-mode (NZDS) fibers are measured at 1550nm.

Factory test

Factory acceptance test is carried out on one sample per order in the presence of the customer or his representative. The requirements for quality characteristics are determined by relevant standards and agreed quality plans.

5.2 Test items

The following table shows that the test items will be carried out according to corresponding references.

	Routine	FAT	Type Test	Test Procedure
Test on fibers				
Mode field diameter				IEC 60793-1-45
Geometric parameter				IEC 60793-1-20
Attenuation (OTDR)	•	٠		IEC 60793-1-40
Chromatic dispersion				IEC 60793-1-42
Cut-off wavelength (cable cut off)				IEC 60793-1-44
Test on wires before stranding				
Diameter	•	•		IEC61232/ IEC60104
Tensile strength	•	•		IEC61232/ IEC60104
Stress at 1% extension (Only ACS wire)	•	•		IEC61232
Elongation at break	•	•		IEC61232/ IEC60104
Wrapping test (Only AA wire)	•	٠		IEC60104
Conductivity	•	٠		IEC61232/ IEC60104
Thickness of Al-cladding (Only ACS wire)	•	٠		IEC61232
Torsion test (Only ACS wire)	•	•		IEC61232
Tests on OPGW				
Quality of surface	٠	٠		IEC 60794-4-10
Direction of lay outer	•	٠		IEC 60794-4-10
Lay length	•	٠		IEC 60794-4-10
Diameter of cable	•	٠		IEC 60794-4-10
Weight of Cable	•	٠		IEC 60794-4-10
DC-resistance			•	IEC 60794-4-10
Breaking strength test		٠	•	IEC 60794-4-10
Stress Strain Test			•	IEC 60794-4-10
Tensile performance test			•	IEC 60794-4-10
Sheave test			•	IEC 60794-4-10
Aeolian vibration simulation			•	IEC 60794-4-10
Galloping test			•	IEC 60794-4-10
Creep test			•	IEC 60794-4-10
Temperature cycle test			•	IEC 60794-4-10
Water penetration			•	IEC 60794-4-10
Short circuit current test			•	IEC 60794-4-10
Lightning test			•	IEC 60794-4-10

Notes: The mark "•" means different test items which belongs to different test series.

6. PACKING AND DRUM

OPGW shall be wound round a non-returnable wooden drum or iron-wooden drum. Both ends of OPGW shall be securely fastened to drum and sealed with a shrinkable cap. The required marking shall be printed with a weatherproof material on the outsides of drum according to customer's requirement.

		Drum Dimensions & Weights						
Cable Diameter (mm)	Drum Length (m)	D	b	В	d	Α	weight	
()	()	cm	cm	cm	cm	cm	kg	
	2000	120	90	110	80	10.5±0.5	150	
10.5-11.0	3000	120	90	110	80	10.5±0.5	150	
10.5-11.0	4000	130	90	110	80	10.5±0.5	170	
	5000	140	90	110	80	10.5±0.5	190	
12.0-12.5	2000	120	90	110	80	10.5±0.5	150	
	3000	130	90	110	80	10.5±0.5	170	
	4000	140	90	110	80	10.5±0.5	190	
	5000	150	90	110	80	10.5±0.5	210	
13.0-14.5	2000	130	90	110	80	10.5±0.5	170	
	3000	140	90	110	80	10.5±0.5	190	
	4000	150	90	110	80	10.5±0.5	210	
	5000	160	90	110	80	10.5±0.5	240	